Natriuretic Peptide Signaling via Guanylyl Cyclase (GC)-A: An Endogenous Protective Mechanism of the Heart
نویسندگان
چکیده
Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones, secretions of which are markedly upregulated during cardiac failure, making their plasma levels clinically useful diagnostic markers. ANP and BNP exert potent diuretic, natriuretic and vasorelaxant effects, which are mediated via their common receptor, guanylyl cyclase (GC)-A (also called natriuretic peptide receptor (NPR)-A). Mice deficient for GC-A are mildly hypertensive and show marked cardiac hypertrophy and fibrosis that is disproportionately severe, given their modestly higher blood pressure. Indeed, the cardiac hypertrophy seen in these mice is enhanced in a blood pressure-independent manner and is suppressed by cardiomyocyte-specific overexpression of GC-A. These results suggest that the actions of a local cardiac ANP/BNP-GC-A system are essential for maintenance of normal cardiac architecture. In addition, GC-A was shown to exert its cardioprotective effects by inhibiting angiotensin II-induced hypertrophic signaling, and recent evidence suggests that regulator of G protein signaling (RGS) subtype 4 is involved in the GC-A-mediated inhibition of Galphaq-coupled hypertrophic signal transduction. Furthermore, several different groups have reported that functional mutations in the promoter region of the human GC-A gene are associated with essential hypertension and ventricular hypertrophy. These findings suggest that endogenous GC-A protects the heart from pathological hypertrophic stimuli, and that humans who express only low levels of GC-A are genetically predisposed to cardiac remodeling and hypertension.
منابع مشابه
Guanylyl cyclase-A inhibits angiotensin II type 1A receptor-mediated cardiac remodeling, an endogenous protective mechanism in the heart.
BACKGROUND Guanylyl cyclase (GC)-A, a natriuretic peptide receptor, lowers blood pressure and inhibits the growth of cardiac myocytes and fibroblasts. Angiotensin II (Ang II) type 1A (AT1A), an Ang II receptor, regulates cardiovascular homeostasis oppositely. Disruption of GC-A induces cardiac hypertrophy and fibrosis, suggesting that GC-A protects the heart from abnormal remodeling. We investi...
متن کاملTranslational Research of the Activation of the C-Type Natriuretic Peptide (CNP)- Guanylyl Cyclase-B Pathway for Skeletal Dysplasia
The natriuretic peptide family consists of three endogenous ligands: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). They exert their biological actions through two subtypes of particulate guanylyl cyclase (GC): GC-A for ANP and BNP, and GC-B for CNP. Among the natriuretic peptide family members, ANP and BNP are cardiac hormones that are ...
متن کاملArg13 of B-type natriuretic Peptide reciprocally modulates binding to guanylyl cyclase but not clearance receptors.
B-type natriuretic peptide (BNP) decreases cardiac preload and hypertrophy. As such, synthetic BNP, nesiritide, was approved for the treatment of acutely decompensated heart failure. However, two problems limit its therapeutic potential. First, ensuing hypertension decreases urine output, and second, guanylyl cyclase-A (GC-A), the primary signaling receptor for BNP, is down-regulated in heart f...
متن کاملDesign and characterization of a soluble fragment of the extracellular ligand-binding domain of the peptide hormone receptor guanylyl cyclase-C.
The intestinal guanylyl cyclase-C (GC-C) was originally identified as an Escherichia coli heat-stable enterotoxin (STa) receptor. STa stimulates GC-C to much higher activity than the endogenous ligands guanylin and uroguanylin, causing severe diarrhea. To investigate the interactions of the endogenous and bacterial ligands with GC-C, we designed and characterized a soluble and properly folded f...
متن کاملNatriuretic peptide receptor guanylyl cyclase-A pathway counteracts glomerular injury evoked by aldosterone through p38 mitogen-activated protein kinase inhibition
Guanylyl cyclase-A (GC-A) signaling, a natriuretic peptide receptor, exerts renoprotective effects by stimulating natriuresis and reducing blood pressure. Previously we demonstrated massive albuminuria with hypertension in uninephrectomized, aldosterone-infused, and high salt-fed (ALDO) systemic GC-A KO mice with enhanced phosphorylation of p38 mitogen-activated protein kinase (MAPK) in podocyt...
متن کامل